Smooth quasi-periodic solutions for the perturbed mKdV equation
نویسندگان
چکیده
منابع مشابه
Rogue periodic waves of the mKdV equation
Rogue periodic waves stand for rogue waves on the periodic background. Two families of traveling periodic waves of the modified Korteweg–de Vries (mKdV) equation in the focusing case are expressed by the Jacobian elliptic functions dn and cn. By using one-fold and twofold Darboux transformations, we construct explicitly the rogue periodic waves of the mKdV equation. Since the dn-periodic wave i...
متن کاملQuasi-Periodic Solutions of Heun’s Equation
By exploiting a recently developed connection between Heun’s differential equation and the generalized associated Lamé equation, we not only recover the well known periodic solutions, but also obtain a large class of new, quasi-periodic solutions of Heun’s equation. Each of the quasi-periodic solutions is doubly degenerate.
متن کاملPeriodic solutions of a singularly perturbed delay differential equation
A singularly perturbed differential delay equation of the form ẋ(t) = −x(t)+ f (x(t − 1), λ) (1) exhibits slowly oscillating periodic solutions (SOPS) near the first period-doubling bifurcation point of the underlying map (obtained by setting = 0). For extremely small values of , these periodic solutions resemble square waves, which consist of sharp, O( ) transition layers connecting intervals ...
متن کاملQuasi-periodic solutions of the 2D Euler equation
We consider the two-dimensional Euler equation with periodic boundary conditions. We construct time quasi-periodic solutions of this equation made of localized travelling profiles with compact support propagating over a stationary state depending on only one variable. The direction of propagation is orthogonal to this variable, and the support is concentrated on flat strips of the stationary st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications on Pure and Applied Analysis
سال: 2016
ISSN: 1534-0392
DOI: 10.3934/cpaa.2016019